какие задачи решают технологии машинного обучения
Машинное обучение — это легко
Для кого эта статья?
Каждый, кому будет интересно затем покопаться в истории за поиском новых фактов, или каждый, кто хотя бы раз задавался вопросом «как же все таки это, машинное обучение, работает», найдёт здесь ответ на интересующий его вопрос. Вероятнее всего, опытный читатель не найдёт здесь для себя ничего интересного, так как программная часть оставляет желать лучшего несколько упрощена для освоения начинающими, однако осведомиться о происхождении машинного обучения и его развитии в целом не помешает никому.
В цифрах
С каждым годом растёт потребность в изучении больших данных как для компаний, так и для активных энтузиастов. В таких крупных компаниях, как Яндекс или Google, всё чаще используются такие инструменты для изучения данных, как язык программирования R, или библиотеки для Python (в этой статье я привожу примеры, написанные под Python 3). Согласно Закону Мура (а на картинке — и он сам), количество транзисторов на интегральной схеме удваивается каждые 24 месяца. Это значит, что с каждым годом производительность наших компьютеров растёт, а значит и ранее недоступные границы познания снова «смещаются вправо» — открывается простор для изучения больших данных, с чем и связано в первую очередь создание «науки о больших данных», изучение которого в основном стало возможным благодаря применению ранее описанных алгоритмов машинного обучения, проверить которые стало возможным лишь спустя полвека. Кто знает, может быть уже через несколько лет мы сможем в абсолютной точности описывать различные формы движения жидкости, например.
Анализ данных — это просто?
Да. А так же интересно. Наряду с особенной важностью для всего человечества изучать большие данные стоит относительная простота в самостоятельном их изучении и применении полученного «ответа» (от энтузиаста к энтузиастам). Для решения задачи классификации сегодня имеется огромное количество ресурсов; опуская большинство из них, можно воспользоваться средствами библиотеки Scikit-learn (SKlearn). Создаём свою первую обучаемую машину:
Вот мы и создали простейшую машину, способную предсказывать (или классифицировать) значения аргументов по их признакам.
— Если все так просто, почему до сих пор не каждый предсказывает, например, цены на валюту?
С этими словами можно было бы закончить статью, однако делать я этого, конечно же, не буду (буду конечно, но позже) существуют определенные нюансы выполнения корректности прогнозов для поставленных задач. Далеко не каждая задача решается вот так легко (о чем подробнее можно прочитать здесь)
Ближе к делу
— Получается, зарабатывать на этом деле я не сразу смогу?
Итак, сегодня нам потребуются:
Дальнейшее использование требует от читателя некоторых знаний о синтаксисе Python и его возможностях (в конце статьи будут представлены ссылки на полезные ресурсы, среди них и «основы Python 3»).
Как обычно, импортируем необходимые для работы библиотеки:
— Ладно, с Numpy всё понятно. Но зачем нам Pandas, да и еще read_csv?
Иногда бывает удобно «визуализировать» имеющиеся данные, тогда с ними становится проще работать. Тем более, большинство датасетов с популярного сервиса Kaggle собрано пользователями в формате CSV.
— Помнится, ты использовал слово «датасет». Так что же это такое?
Датасет — выборка данных, обычно в формате «множество из множеств признаков» → «некоторые значения» (которыми могут быть, например, цены на жильё, или порядковый номер множества некоторых классов), где X — множество признаков, а y — те самые некоторые значения. Определять, например, правильные индексы для множества классов — задача классификации, а искать целевые значения (такие как цена, или расстояния до объектов) — задача ранжирования. Подробнее о видах машинного обучения можно прочесть в статьях и публикациях, ссылки на которые, как и обещал, будут в конце статьи.
Знакомимся с данными
Предложенный датасет можно скачать здесь. Ссылка на исходные данные и описание признаков будет в конце статьи. По представленным параметрам нам предлагается определять, к какому сорту относится то или иное вино. Теперь мы можем разобраться, что же там происходит:
Работая в Jupyter notebook, получаем такой ответ:
Это значит, что теперь нам доступны данные для анализа. В первом столбце значения Grade показывают, к какому сорту относится вино, а остальные столбцы — признаки, по которым их можно различать. Попробуйте ввести вместо data.head() просто data — теперь для просмотра вам доступна не только «верхняя часть» датасета.
Простая реализация задачи на классификацию
Переходим к основной части статьи — решаем задачу классификации. Всё по порядку:
Создаем массивы, где X — признаки (с 1 по 13 колонки), y — классы (0ая колонка). Затем, чтобы собрать тестовую и обучающую выборку из исходных данных, воспользуемся удобной функцией кросс-валидации train_test_split, реализованной в scikit-learn. С готовыми выборками работаем дальше — импортируем RandomForestClassifier из ensemble в sklearn. Этот класс содержит в себе все необходимые для обучения и тестирования машины методы и функции. Присваиваем переменной clf (classifier) класс RandomForestClassifier, затем вызовом функции fit() обучаем машину из класса clf, где X_train — признаки категорий y_train. Теперь можно использовать встроенную в класс метрику score, чтобы определить точность предсказанных для X_test категорий по истинным значениям этих категорий y_test. При использовании данной метрики выводится значение точности от 0 до 1, где 1 100% Готово!
— Неплохая точность. Всегда ли так получается?
Для решения задач на классификацию важным фактором является выбор наилучших параметров для обучающей выборки категорий. Чем больше, тем лучше. Но не всегда (об этом также можно прочитать подробнее в интернете, однако, скорее всего, я напишу об этом ещё одну статью, рассчитанную на начинающих).
— Слишком легко. Больше мяса!
Для наглядного просмотра результата обучения на данном датасете можно привести такой пример: оставив только два параметра, чтобы задать их в двумерном пространстве, построим график обученной выборки (получится примерно такой график, он зависит от обучения):
Да, с уменьшением количества признаков, падает и точность распознавания. И график получился не особенно-то красивым, но это и не решающее в простом анализе: вполне наглядно видно, как машина выделила обучающую выборку (точки) и сравнила её с предсказанными (заливка) значениями.
Предлагаю читателю самостоятельно узнать почему и как он работает.
Последнее слово
Надеюсь, данная статья помогла хоть чуть-чуть освоиться Вам в разработке простого машинного обучения на Python. Этих знаний будет достаточно, чтобы продолжить интенсивный курс по дальнейшему изучению BigData+Machine Learning. Главное, переходить от простого к углубленному постепенно. А вот полезные ресурсы и статьи, как и обещал:
Материалы, вдохновившие автора на создание данной статьи
Более углубленное изучение использования машинного обучения с Python стало возможным, и более простым благодаря преподавателям с Яндекса — этот курс обладает всеми необходимыми средствами объяснения, как же работает вся система, рассказывается подробнее о видах машинного обучения итд.
Файл сегодняшнего датасета был взят отсюда и несколько модифицирован.
Где брать данные, или «хранилище датасетов» — здесь собрано огромное количество данных от самых разных источников. Очень полезно тренироваться на реальных данных.
Буду признателен за поддержку по улучшению данной статьи, а так же готов к любому виду конструктивной критики.
Простыми словами: как работает машинное обучение
В последнее время все технологические компании твердят о машинном обучении. Мол, столько задач оно решает, которые раньше только люди и могли решить. Но как конкретно оно работает, никто не рассказывает. А кто-то даже для красного словца машинное обучение называет искусственным интеллектом.
Задача: отличить осмысленный текст от белиберды
Текст, который пишут настоящие люди, выглядит так:
Для человека задача кажется тривиальной, ведь сразу видно, где чистое, а где зловредное, но вот формализовать разницу или, тем более, объяснить ее компьютеру — уже сложнее. Мы используем машинное обучение: сначала дадим алгоритму примеры, он на них «обучится», а потом будет сам правильно отвечать, где что.
Алгоритм
Наш алгоритм будет считать, как часто в нормальном тексте одна конкретная буква следует за другой конкретной буквой. И так для каждой пары букв. Например, для первой чистой фразы — «Могу творить, могу и натворить!» — распределение получится такое:
ат 1 | мо 2 | ри 2 |
во 2 | на 1 | тв 2 |
гу 2 | ог 2 | ть 2 |
ит 2 | ор 2 |
Что получилось: за буквой в следует буква о — два раза, — а за буквой а следует буква т — один раз. Для простоты мы не учитываем знаки препинания и пробелы.
На этом этапе мы понимаем, что для обучения нашей модели одной фразы мало: и сочетаний недостаточное количество, и разница между частотой появления разных сочетаний не так велика. Поэтому надо взять какой-то существенно больший объем данных. Например, давайте посчитаем, какие сочетания букв встречаются в первом томе «Войны и мира»:
то 8411 | на 6236 | на 6236 |
ст 6591 | не 5199 | оу 31 |
на 6236 | по 5174 | мб 2 |
оу 31 | ен 4211 | тж 1 |
Разумеется, это не вся таблица сочетаний, а лишь ее малая часть. Оказывается, вероятность встретить «то» в два раза выше, чем «ен». А чтобы за буквой т следовало ж — такое встречается лишь один раз, в слове «отжившим».
Отлично, «модель» русского языка у нас теперь есть, как же ее использовать? Чтобы определить, насколько вероятно исследуемая нами строка чистая или зловредная, посчитаем ее «правдоподобность». Мы будем брать каждую пару букв из этой строки, определять по «модели» ее частоту (по сути реалистичность сочетания букв) и перемножать эти числа:
F(мо) * F(ог) * F(гу) * F(тв) *… = 2131 * 2943 * 474 * 1344 *… = правдоподобность
Также в финальном значении правдоподобности следует учесть количество символов в исследуемой строке — ведь чем она была длиннее, тем больше чисел мы перемножили. Поэтому из произведения извлечем корень нужной степени (длина строки минус один).
Использование модели
Теперь мы можем делать выводы: чем больше полученное число — тем правдоподобнее исследуемая строка ложится в нашу модель. Стало быть, тем больше вероятность, что ее писал человек, то есть она чистая.
Если же исследуемая строка содержит подозрительно большое количество крайне редких сочетаний букв (например, ёё, тж, ъь и так далее), то, скорее всего, она искусственная — зловредная.
Для строчек выше правдоподобность получилась следующая:
Чтобы не гадать, что такое «много», а что — «мало», лучше доверить определение порогового значения самой машине (пусть обучается). Для этого скормим ей некоторое количество чистых строк и посчитаем их правдоподобность, а потом скормим немного зловредных строк — и тоже посчитаем. И вычислим некоторое значение посередине, которое будет лучше всего отделять одни от других. В нашем случае получится что-то в районе 500.
В реальной жизни
Давайте осмыслим, что же у нас получилось.
1. Мы выделили признаки чистых строк, а именно пары символов.
В реальной жизни — при разработке настоящего антивируса — тоже выделяют признаки из файлов или других объектов. И это, кстати, самый важный шаг: от уровня экспертизы и опыта исследователей напрямую зависит качество выделяемых признаков. Понять, что же на самом деле важно — это все еще задача человека. Например, кто сказал, что надо использовать пары символов, а не тройки? Такие гипотезы как раз и проверяют в антивирусной лаборатории. Отмечу, что у нас для отбора наилучших и взаимодополняющих признаков тоже используется машинное обучение.
2. На основании выделенных признаков мы построили математическую модель и обучили ее на примерах.
Само собой, в реальной жизни мы используем модели чуть посложнее. Сейчас наилучшие результаты показывает ансамбль решающих деревьев, построенный методом Gradient boosting, но стремление к совершенству не позволяет нам успокоиться.
3. На основе математической модели мы посчитали рейтинг «правдоподобности».
В реальной жизни мы обычно считаем противоположный рейтинг — рейтинг вредоносности. Разница, казалось бы, несущественная, но угадайте, насколько неправдоподобной для нашей математической модели покажется строка на другом языке — или с другим алфавитом?
Антивирус не имеет права допустить ложное срабатывание на целом классе файлов только по той причине, что «мы его не проходили».
Альтернатива машинному обучению
20 лет назад, когда вредоносов было мало, каждую «белиберду» можно было просто задетектить с помощью сигнатур — характерных отрывков. Для примеров выше “сигнатуры” могли бы быть такими:
ОРПорыав аоырОрпаыор ОрОРАыдцуцзущгкгеуб ыватьыивдцулвдлоадузцщ
Йцхяь длваополц ыадолцлопиолым бамдлотдламда
Антивирус сканирует файл, если встретил «зущгкгеу», говорит: «Ну понятно, это белиберда номер 17». А если найдет «длотдламд» — то “белиберда номер 139”.
15 лет назад, когда вредоносов стало много, преобладать стало «дженерик»-детектирование. Вирусный аналитик пишет правила, что для осмысленных строк характерно:
И вот 10 лет назад, когда вредоносов стало ну просто очень много, начали робко внедряться алгоритмы машинного обучения. Поначалу по сложности они были сопоставимые с описанным нами простейшим примером, но мы активно нанимали специалистов и наращивали уровень экспертных знаний.
Сейчас без машинного обучения не работает ни один нормальный антивирус. Если оценивать вклад в защиту пользователей, то с методами на основе машинного обучения по статическим признакам могут посоперничать разве что методы на основе анализа поведения. Но только при анализе поведения тоже используется машинное обучение. В общем, без него уже никуда.
Недостатки
Преимущества понятны, но неужели это серебряная пуля, спросите вы. Не совсем. Этот метод хорошо справляется, если описанный выше алгоритм будет работать в облаке или в инфраструктуре, постоянно обучаясь на огромных количествах как чистых, так и вредоносных объектов.
Также очень хорошо, если за результатами обучения присматривает команда экспертов, вмешивающихся в тех случаях, когда без опытного человека не обойтись.
В этом случае недостатков действительно немного, а по большому счету только один — нужна эта дорогостоящая инфраструктура и не менее дорогостоящая команда специалистов.
Другое дело, когда кто-то пытается радикально сэкономить и использовать только математическую модель и только на стороне продукта, прямо у клиента. Тогда могут начаться трудности.
1. Ложные срабатывания.
Детектирование на базе машинного обучения — это всегда поиск баланса между уровнем детектирования и уровнем ложных срабатываний. И если нам захочется детектировать побольше, то ложные срабатывания будут. В случае машинного обучения они будут возникать в непредсказуемых и зачастую труднообъяснимых местах. Например, эта чистая строка — «Мцыри и Мкртчян» — распознается как неправдоподобная: 145 баллов в модели из нашего примера. Поэтому очень важно, чтобы антивирусная лаборатория имела обширную коллекцию чистых файлов для обучения и тестирования модели.
Злоумышленник может разобрать такой продукт и посмотреть, как работает модель. Он человек и пока, если не умнее, то хотя бы креативнее машины — поэтому он подстроится. Например, следующая строка считается чистой (1200 баллов), хотя ее первая половина явно вредоносная: «лоыралоыврачигшуралорыловарДобавляем в конец много осмысленного текста, чтобы обмануть машину». Какой бы умный алгоритм ни использовался, его всегда может обойти человек (достаточно умный). Поэтому антивирусная лаборатория обязана иметь продвинутую инфраструктуру для быстрой реакции на новые угрозы.
Один из примеров обхода описанного нами выше метода: все слова выглядят правдоподобно, но на самом деле это бессмыслица. Источник.
3. Обновление модели.
На примере описанного выше алгоритма мы упоминали, что модель, обученная на русских текстах, будет непригодна для анализа текстов с другим алфавитом. А вредоносные файлы, с учетом креативности злоумышленников (смотри предыдущий пункт) — это как будто постепенно эволюционирующий алфавит. Ландшафт угроз меняется довольно быстро. Мы за долгие годы исследований выработали оптимальный подход к постепенному обновлению модели прямо в антивирусных базах. Это позволяет дообучать и даже полностью переобучать модель «без отрыва от производства».
Заключение
Все в антивирусе должно быть прекрасно — и поведенческий анализ, и облачная защита, и алгоритмы машинного обучения, и многое-многое другое. Но об этом “многом другом” — в следующий раз.
Гид по структуре машинного обучения
Контент-маркетолог Мария Пушикова специально для блога Нетологии перевела статью Charles-Antoine Richard о том, что такое машинное обучение и какие методы машинного обучения существуют.
Совсем недавно мы обсуждали необходимость использования методов машинного обучения в бизнесе. Это подтолкнуло меня изучить основы методов машинного обучения, во время чего я сознал: большая имеющейся часть информации направлена на разработчиков или специалистов по Big Data.
Поэтому я решил, что читателям будет интересно прочесть объяснение методов машинного обучения от человека нетехнической специальности.
Машинное обучение — это…
Вот самое простое определение, которое я нашел:
Машинное обучение — это «[…] класс методов искусственного интеллекта, которые позволяют улучшить результаты работы компьютеров путем обучения на известных данных», — Berkeley.
Теперь давайте разложим все по полочкам, чтобы выстроить основы знаний в области машинного обучения.
…подраздел искусственного интеллекта (ИИ)
ИИ — это наука и технология по разработке мероприятий и методов, позволяющих компьютерам успешно выполнять задачи, которые обычно требуют интеллектуального осмысления человека. Машинное обучение — часть этого процесса: это методы и технологии, с помощью которых можно обучит компьютер выполнять поставленные задачи.
…способ решения практических задач
Методы машинного обучения все еще в развитии. Некоторые уже изучены и используются (рассмотрим дальше), но ожидается, что со временем их количество будет только расти. Идея в том, что совершенно разные методы используются для совершенно разных компьютеров, а различные бизнес-задачи требуют различных методов машинного обучения.
… способ увеличить эффективность компьютеров
Для решения компьютером задач с применением искусственного интеллекта нужны практика и автоматическая поднастройка. Модель машинного обучения нуждается в тренировке с использованием базы данных и в большинстве ситуаций — в подсказке человека.
…технология, основанная на опыте
ИИ нуждается в предоставлении опыта — иными словами, ему необходимы данные. Чем больше в систему ИИ поступает данных, тем точнее компьютер взаимодействует с ними, а также с теми данными, что получает в дальнейшем. Чем выше точность взаимодействия, тем успешнее будет выполнение поставленной задачи, и выше степень прогностической точности.
Простой пример:
Как работает машинное обучение
Машинное обучение часто называют волшебным или черным ящиком:
Вводишь данные → «волшебный черный ящик» → Миссия выполнена.
Давайте посмотрим на сам процесс обучения, чтобы лучше понять, как машинное обучение справляется с данными.
Машинное обучение основывается на данных. Первый шаг — убедиться, что имеющиеся данные верны и относятся именно к той задаче, которую вы пытаетесь решить. Оцените свои возможности для сбора данных, обдумайте их источник, необходимый формат и т. д.
Очистка
Данные зачастую формируются из различных источников, отображаются в различных форматах и языках. Соответственно, среди них могут оказаться нерелевантные или ненужные значения, которые потребуется удалить. И наоборот, каких-то данных может не хватать, и потребуется их добавить. От правильной подготовки базы данных прямым образом зависит и пригодность к использованию, и достоверность результатов.
Разделение
В зависимости от размера набора данных в некоторых случаях может потребоваться только небольшая их часть. Обычно это называется выборкой. Из выбранной части данные надо разделить на две группы: одна для использования алгоритмом, а другая для оценки его действий.
Обучение
Этот этап фактически направлен на поиск математической функции, которая точно выполнит указанную задачу. Обучение разнится в зависимости от типа используемой модели. Построение линий в простой линейной модели — это обучение; генерация дерева принятия решений для алгоритма случайного леса — это также обучение. Изменение ответов при построении дерева решений поможет скорректировать алгоритм.
Чтобы было проще, сосредоточимся на нейронных сетях.
Суть в том, что алгоритм использует часть данных, обрабатывает их, замеряет эффективность обработки и автоматически регулирует свои параметры (также называемый метод обратного распространения ошибки) до тех пор, пока не сможет последовательно производить желаемый результат с достаточной достоверностью.
Оценка
После того как алгоритм хорошо показал себя на учебных данных, его эффективность оценивается на данных, с которыми он еще не сталкивался. Дополнительная корректировка производится при необходимости. Этот процесс позволяет предотвратить переобучение — явление, при котором алгоритм хорошо работает только на учебных данных.
Оптимизация
Модель оптимизируется, чтобы при интеграции в приложение весить как можно меньше и как можно быстрее работать.
Какие существуют типы машинного обучения и чем они отличаются
Существует множество моделей для машинного обучения, но они, как правило, относятся к одному из трех типов:
В зависимости от выполняемой задачи, одни модели могут быть более подходящими и более эффективными, чем другие.
Обучение с учителем (supervised learning)
В этом типе корректный результат при обучении модели явно обозначается для каждого идентифицируемого элемента в наборе данных. Это означает, что при считывании данных у алгоритма уже есть правильный ответ. Поэтому вместо поисков ответа он стремится найти связи, чтобы в дальнейшем, при введении необозначенных данных, получались правильные классификация или прогноз.
В контексте классификации алгоритм обучения может, например, снабжаться историей транзакций по кредитным картам, каждая из которых помечена как безопасная или подозрительная. Он должен изучить отношения между этими двумя классификациями, чтобы затем суметь соответствующим образом маркировать новые операции в зависимости от параметров классификации (например, место покупки, время между операциями и т. д.).
В случае когда данные непрерывно связаны друг с другом, как, например, изменение курса акций во времени, регрессионный алгоритм обучения может использоваться для прогнозирования следующего значения в наборе данных.
Обучение без учителя (unsupervised learning)
В этом случае у алгоритма в процессе обучения нет заранее установленных ответов. Его цель — найти смысловые связи между отдельными данными, выявить шаблоны и закономерности. Например, кластеризация — это использование неконтролируемого обучения в рекомендательных системах (например, люди, которым понравилась эта бутылка вина, также положительно оценили вот эту).
Обучение с подкреплением
Этот тип обучения представляет собой смесь первых двух. Обычно он используется для решения более сложных задач и требует взаимодействия с окружающей средой. Данные предоставляются средой и позволяют алгоритму реагировать и учиться.
Область применения такого метода обширна: от контроля роботизированных рук и поиска наиболее эффективной комбинации движений, до разработки систем навигации роботов, где поведенческий алгоритм «избежать столкновения» обучается опытным путем, получая обратную связь при столкновении с препятствием.
Логические игры также хорошо подходят для обучения с подкреплением, так как они традиционно содержат логическую цепочку решений: например, покер, нарды и го, в которую недавно выиграл AlphaGo от Google. Этот метод обучения также часто применяется в логистике, составлении графиков и тактическом планировании задач.
Для чего можно использовать машинное обучение
В бизнесе можно рассматривать три сферы применения машинного обучения: описательную, прогнозирующую и нормативную.
Описательное применение относится к записи и анализу статистических данных для расширения возможностей бизнес-аналитики. Руководители получают описание и максимально информативный анализ результатов и последствий прошлых действий и решений. Этот процесс в настоящее время обычен для большинства крупных компаний по всему миру — например, анализ продаж и рекламных проектов для определения их результатов и рентабельности.
Второе применение машинного обучения — прогнозирование. Сбор данных и их использование для прогнозирования конкретного результата позволяет повысить скорость реакции и быстрее принимать верные решения. Например, прогнозирование оттока клиентов может помочь его предотвратить. Сегодня этот процесс применяется в большинстве крупных компаний.
Третье и наиболее продвинутое применение машинного обучения внедряется уже существующими компаниями и совершенствуется усилиями недавно созданных. Простого прогнозирования результатов или поведения уже недостаточно для эффективного ведения бизнеса. Понимание причин, мотивов и окружающей ситуации — вот необходимое условие для принятия оптимального решения. Этот метод наиболее эффективен, если человек и машина объединяют усилия. Машинное обучение используется для поиска значимых зависимостей и прогнозирования результатов, а специалисты по данным интерпретируют результат, чтобы понять, почему такая связь существует. В результате становится возможным принимать более точные и верные решения.
Кроме того, я бы добавил еще одно применение машинного обучения, отличное от прогнозного: автоматизация процессов. Прочесть об этом можно здесь.
Вот несколько примеров задач, которые решает машинное обучение.
Логистика и производство
Продажи и маркетинг
Кадры
Финансы
Здравоохранение
Больше примеров использования машинного обучения, искусственного интеллекта и других связанных с ними ресурсов вы найдете в списке, созданном Sam DeBrule.
Вместо заключения
Помните, что совместное использование разных систем и методик — ключ к успеху. ИИ и машинное обучение хоть и сложны, но увлекательны. Буду рад продолжить обсуждение стратегий разработки и проектирования с использованием больших данных вместе с вами. Комментируйте и задавайте вопросы.
Мнение автора и редакции может не совпадать. Хотите написать колонку для «Нетологии»? Читайте наши условия публикации.